<des@cs.duke.edu>

L

by Daniel E.
Singer

Dan has been doing a mix of
programming and system
administration since 1983.
He is currently a systems
administrator in the Duke
University Department of
Computer Science in
Durham, North Carolina, USA.

April 1998 ;login:

Highlighted in this article: webrowse, a tool for viewing the world (or text)
through the eyes of a browser.

When | first visited Steve Kinzler’s Web page, it was like | had stumbled into an old-
style hardware store. Tools were hanging on the walls and lying on shelves, some of
them elaborate and exotic, others simple and mundane. He had responded to one of my
solicitations for tools and had invited me to visit his shop, enticing me with the
prospect of custom-made tools of unique character.

And, well, Toolman can carry on with this figurative language for only so long. Suffice it
to say that Steve is a system administrator after my own heart, who looks for creative
solutions to simplify and expedite the common, repetitive, computer-related tasks that
beset him and his users, and who authors software tools as a means toward that end.

One of the tools that Steve highlighted in our correspondence is a program called
webrowse, Which can be used as a quick interface to a WWeb browser (hence the name)
on a UNIX system.

webrowse i a handy tool for us command-line types living in a point-and-click world.
With a browser running somewhere on your workstation (even iconified or in another
virtual desktop), point webrowse at an HTML document (a file or STDIN), and it will
bring it up in the browser; point it at some plain text, and it can first mark up the text,
adding appropriate hypertext links on the fly. Now some of this might sound like some-
thing you could do with a few simple aliases, but various aspects of this are not so easily
handled.

webrowse can currently interface to both the Netscape (default) and Mosaic browsers,
selectable via command-line or environment, and will issue appropriate commands to
activate an already running browser. (Both of these browsers have the “remote control”
features that webrowse exploits.) With the -m (markup) option, it will HTML-ize the
input by adding standard HTML header and body tags and by scanning the text for
anything that looks like an address or a URL and adding an appropriate link. So, for
instance, an email address will be marked up with a mailto: link. Other possible
markups include links for http:, ftp:, file:, and news:. webrowse employs sophisti-
cated pattern matching as a basis for its heuristic approach to these transformations.

webrowse iS also handy as a filter (with -o) such that the converted text output can be
directed to a file or piped on to some other process.

As a simple example, let’s say you have an email message about virus hoaxes that con-
tains some URLs for Web pages on this topic. You can save the message to a file named
“virus-hoax”, then type webrowse -m virus-hoax. The text of the message will be
marked up with HTML tags, including the URLs, and will then pop up in your browser
window, where you can follow the links easily. A more efficient method would be to
map some function of your mail reader to the command webrowse -m Or just pipe the
message to this command, reducing steps and avoiding the need for the temporary file
holding the message (and you know how Toolman despises temporary files!).

As another example, Steve uses the following key mapping with the nn newsreader:

map both I (
save-full " |webrowse -mw"

)

This allows him, by hitting 1, to view the selected articles in a new browser window,
with all the URLs, email addresses, etc., converted to links.

He also defines some macros in his .exrc file for use with the vi editor. For example:
map “V'Iwb :w !webrowse -m"M
map "V Iww :!webrowse %"M
The first (wb) will bring up the text currently being edited in the browser with markup
added. The second (ww) will tell the browser to load the current file. For each of these,
type TAB and the two letters to invoke the macro.

webrowse has a plethora of command line options and environment variables for fine
tuning and customizing its operation, making it handy to embed in other scripts as well
as use on its own. The -h (help) option and the man page will shed some light on these.

Steve’s shop, er, Web page includes many other tools addressing various aspects of sys-
tem administration and general UNIX usage. Here’s a quick survey of a few that might
warrant an evaluation:

= \Web:
ClipControl: this Java applet is an AudioClip controller for flexibly embed-
ding audio files in Web pages.

= \Web administration:
ftw: file tree walker, for Web document tree checking. Checks validity of sym-
bolic links, especially if the server’s running with FollowSymLinks Set.

starthttpd: start, restart, or kill an HTTP daemon, as needed. Helps to keep a
server up near 100%.

rolllogs: rollover NCSA-style httpd log files, works with starthttpd.
Flexible roll-over of Web logs at various resolutions.

= Systems administration:
dumpdates: produce readable and organized listing of dump dates for mount-
ed filesystems.

rdistsumm: produce readable summary of rdist output, highlighting errors.

= General use:
push and pop: conveniently and safely push/pop files into/out of a subdirecto-

ry.
rename: Move or copy files and directories based on a sed or perl expression.

vigrep: edit all files containing the given regular expression, such as for multi-
file software development.

wh: list all instances of given files in a search path. When which just isn’'t
enough

width: determine the printing widths of input lines, find the longest line in a
file, etc.

Vol. 23, No. 2 ;login:

z: convenient, safe front-end for (un)tarring and (un)compressing, with intu-
itive use of subdirectories. z <something> usually does the right thing. Good
for naive users.

Steve hung his hat for quite some time at Indiana University, Bloomington, where he
completed his M.S. in computer science, taught, worked on many projects, and per-
formed Web and UNIX systems administration. He is creator and maintainer of the
Picons database (<http://www.cs.indiana.edu/picons/ftp/>) and the Internet Oracle (a.k.a. the
USENET Oracle) (<http://www.pcnet.com/~stenor/oracle/>) and is a longtime member of
USENIX. His other accomplishments are far too numerous to list here. He currently
lives in Ann Arbor, Michigan, and is working for the Health Management Research
Center at the University of Michigan.

Thanks, Steve, for making your materials available.

I surfed the Web a bit to see if other tools similar to webrowse were available. | found
one called txt2html by Seth Golub that has some interesting features. It's quite versatile
in its ability to add markup and allows you to define a private “dictionary” of conver-
sion rules. It is strictly a filter, and lacks the ability to automatically interact with a
browser. (But you can do txt2html < foo.txt | webrowse -s).txt2html can be
found at <http://www.cs.wustl.edu/~seth/txt2html/>.

Many other public domain tools for converting between various formats and HTML are
available. A good starting point for a search is <http://www.yahoo.com/Computers_and_Internet/
Software/Internet/World_Wide_Web/HTML_Converters/>. (Try looking that one up in your Funk and
Wagnalls!)

By the way, on the topic of conversions to/from HTML, I've written a script called
index2html that can be used in conjunction with the check program (June 1997) to
create interconnecting HTML-ized INDEX files in a directory hierarchy. index2html is
still in its adolescence; comments are welcome. It can be found at
<ftp://ftp.cs.duke.edu/pub/des/scripts/>.

As a final example, here’s how I've used webrowse and index2html together.
Somewhere in our extended filesystem, we have a directory hierarchy of documentation
rooted at /home/lab/doc/. Each directory has an INDEX file, and index2html is used
to generate the INDEX.html files. The following script, called 1abdoc, easily brings up a
browser displaying the top level of this mini-web of documentation.

April 1998 ;login:

I#!/bin/sh
@(#) labdoc: bring up a browser on the /home/lab/doc/ hierarchy

this script uses the script “webrowse’, which will bring up
the document in an already running browser; if that fails, a
new browser is started;

"WB_BROWSER’ is one of the environment variables recognized by
“webrowse’, and is used here for consistency;

FHo¥ oW W H K W W KK

1/98, D.Singer

DOC="/home/lab/doc/INDEX.html"
WB="/home/lab/bin/webrowse"
DFLT BROWSER="netscape"

$WB $DOC 2>&- ||
{ ${WB_BROWSER:-$DFLT_ BROWSER} $DOC & }

exit

What we’ve seen here, via examples from Steve’s Web page and beyond, is the tool
approach in action: an approach that is very natural to the UNIX environment. A well-
designed tool can make your life easier and can often be utilized as a component of
other tools, as in the 1labdoc example above. And the design process can make life more
interesting (to us command-line types, anyway). Sh, Perl, Tcl, . . ., these are powerful,
high level languages (I've even seen an example of Bourne shell used as a formal object-
oriented language [1]), and they’re relatively easy to use. Need a tool? Write one! (Or
cop one out on the net.)

Are there any tool topics that you would like to see covered? Be sure to let me know if
you have any suggestions for future articles.

[1] Jeffrey S. Haemer, “A New Object-Oriented Programming Language: sh,”
Proceedings, USENIX Summer 1994 Technical Conference, pages 1-13, June 1994,

<Toolman@usenix.org>

Vol. 23, No. 2 ;login:

